EFFECT OF CONDENSED POWDER PHASE REACTIONS
ON THE STABILITY OF STEADY-STATE COMBUSTION PROCESSES

V. N. Vilyunov and A. P. Rudnev UDC 536.46 +662.311

A study has been made of the low-frequency stability of powder combustion in a semiclosed
chamber, working within the framework of a linear theory with account taken of condensed-
phase (k-phase) inertia and evolution of thermal energy. The case treated is that of the first-
order reaction. It is shown that k-phase exothermic chemical decomposition {ncreases the
stability of the combustion process. The results of numerical computations are interpreted.

1. Formulation of the Problem. Theoretical studies of the stability of powder combustion, in an
open or in a semiclosed chamber (see the review of [1], as well as [2], etc.), usually start from the assump-
tion that the k-phase reaction layer is infinitesimally thin and therefore has zero inertia. In actual fact,
this layer must have finite dimensions. According to present combustion theories [3], the greater part of
the thermal energy required for k-phase combustion comes from reactions occurring in the phase itself.

Let it be supposed that a first-order chemical reaction is taking place in the k-phase. Under steady-
state conditions, active component decomposition and thermal energy propagation can be described by the
following system of equations
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with the conditions

°0)=1T0, I'(— ) =T, a° (0) = 8°, ¢°(— ) =1,
the origin of coordinates being located in the combustion surface.

Here x is a spatial coordinate, T°(x) the temperature, a° (x) the relative reactant concentration, b°
the dispersion depth, T,° the surface temperature, T, the initial temperature, u° the combustion rate, p,,
¢y, and » the respective density, specific heat capacity, and thermal conductivity, E the activation energy,
z the preexponential factor, Q the heat of reaction, and Rythe molar gas constant, the degree sign indicating
the standard state.

The first integral of (1.1) and (1.2) gives a steady-state relation between f° the temperature gradient
at the k-phase side of the interface, the dispersion depth, and other factors, namely
=t —Ty— L (1—b) (1.3)
Let us now solve the system (1.1), (1.2) assuming the combustion rate u° to be known. We first draw on the
Arrhenius equation to pass from (1.1), (1.2) to two other equations which, taken together, give a first~

approximation description of combustion and thermal energy propagation in the k-phase reaction and
Michelson heating layers. The Michelson layer solution can be written as-
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680" (8) = Hexp (§ — &), a° (§) =1 (€1 §> — ) (1.4)
Here £, 0,° () are, respectively, a dimensionless coordinate and temperature
E=au’ /%, 8°(8) = (I°—To) /(T" — Ty)

the latter expressed relative to the difference T°—T,, the subscript zero indicating a quantity measured
in the heating layer and the subscript 1 a quantity measured in the reaction layer, £ is a quantity related
to Xq,the dimensioned depth of reaction layer,by the equation

Ey = —ou’ln
and H is the dimensijonless temperature at the interface between k-phase reaction and heating layers.

Within the reaction layer, the exponential can be approximated by a parabolic function, the coefficients
of this function being so chosen that the values of exponential and parabolic functions willbe identical on the
combustion surface (point T°=T,°) and at points where exp [ —E/(R;T°)} is less than exp [—E/ (RyT{°)] by the
respective factors 1/e and 1/e? [points T°=ET,"/(E +RyT;°) and T° =ET,’/(E +2R,T,°)]. Since the rate of
steady-state combustion is related to the k-phase kinetic and thermal characteristics by an equation of the
form [4] (a similar equation has been independently derived in [5))

o = 2RI oxp [ E/ (AT (1.5)
( - (1 =0 pcE [T1° — To — (1 — b°) Q/ (2¢0))

(1.1) and (1.2) can be rewritten

B Y L S — B -8+ C(1— 8P =0 (1.6)
0>E>%)
de 4 G [ — B(1 —8,°) -+ C(1 — 0, = 0 (1.7)

with the conditions
910 (0) = 1, (llo (O) —= b°

Here 04°(§), a{° (§) are the respective dimensionless temperature and reactant concentration in
the k-phase reaction layer

}y_ Q(i.._b") — E(71 —T() B~g('3—1)(3'3'—1)
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The parameter A represents the ratio of the amount of thermal energy liberated in the k-phase exo-
thermic reaction to the total thermal (physical) energy content of this phase. The reciprocal of g gives a
measure of the range of relative temperatures covered by the chemical reaction. Typically, the conditions
under which combustion is observed are such that A = 1, g >» 1. Thus for nitroglycerine powders at room-
temperatures and rocket pressures, one has [3] A= 0.7-0.9, g~ 10-14.

Expressing the temperature and concentration by power series in the neighborhood of the point £ =0,
one can pass from (1.6), (1.7) to the following solutions, valid in the k~phase reaction layer

0° =1+ ab 4 (@ — G) &2+ [a 4 Gy (G, — 1 — aB)]§3/6 +
Flo—6ll+2 B+al) =BG+ G G —1— 3B} §26+ .. O0>i>¢ (1.8)

a° = b {1 — Gy + G, (G, — aB)E2 — G, [22°C + B (@ — Gy) — G, (3aB — G,)] E/6 + . . .) (1.9)

where « =d92(0)/d§ is a dimensionless temperature gradient on the k-phase side of the combustion
surface,

The quantities H and « of (1.4), (1.8), (1.9) are determined from the condition that the temperature
and its various derivatives obtained from the two solutions be pairwise identical at the point £ «S, Ex-
pressions for these quantities, valid to within third-order terms, are
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H=1+8&+0+GE2+ 1 +26(1+B—G)E6
a =146 (& + (B —G) &2 + 120 + B (1 — 36, + 26)) + 6,21 1,76}

Provisionally setting the reaction layer depth equal to the distance from the k-phase surface at which
the rate of evolution of thermal energy has fallen to 1/e? of its value on the surface itself, one obtains

= i{b;—vg’ — [(M? 4 L3y — M + [(M? 4 L3 4 M]-/,}

u
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) y N
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Let us now study the stability of steady-state combustion under small perturbations. In a linear
approximation, the expressions for the dimensionless pressure, combustion rate, reactant temperatures
and concentrations in the k-phase reaction and heating layers, dispersion depth, and surface temperature
and temperature gradient, take the form

n=-L=14n¥(n), v=-%=1+up(), 6 =6"®+ 0u®y(r)

a1=a,°(€) + an E) P (1), B8o=100"(&) + 8o (E) W (1), @g ==
b= b (1), 8 =8,(0,7) = 1+ Dyp(x),

a6 (0,
= ‘—13(5—1') =a + P (1)

where T =t (u)?/y designating a dimensionless time. The absolute values of 7, vy, 84y (), ay1(§), 8go(8),
by, ¥4, @4 are much smaller than the corresponding steady-state values, and the function ¢ (7) gives the time
variation of the dimensionless variables.

Following the well-known method of [6], one can now pass from the steady-state equations
u=u’ (p, To)y T1° = I (p, Ty), O° =8° (0, T)
to’
u=u(,f) Ih=T,(pN b=0b(p N (1.10)

valid under nonstationary conditions. Here f =29T (0, t)/3x designates the temperature gradient on the k-
phase side of the surface.

Working still in the linear approximation, and combining (1.10) with (1.3), one obtains

e R R~ 1 7% NE M
[t =1 +r—1+ e, = {p.[k(i —n -1 ] rlv—n) +1*E";,]}m +a=Ny, (1.12)
[ft—n 4 r =14 2208 — gk -1 +r—1]—miva—n +phm + 2 (1.13)

The k, v, r, 4, m, 8 parameters of these equations respectively characterize the dependence of the com-
bustion rate, surface temperature, and dispersion depth on the initial temperature and pressure

R alnu° _ {alnw® _(oTs®
k= (T _To)( 3T, )p v—(alﬂP)To’ r—_(m)p
R ary° e alnd° _ [alnb®
W= Tl°—7'o(.3lnp)r.’ m =Ty —T°)( T, )p’ B= (tﬂnp)r.

Under nonstationary conditions, the k-phase inertia is expressed through the equations for thermal
conduction and chemical kinetics, i.e.,

a0 . 3’9 - 30 Qzxa E .
= VR T @ — T @R [_ ReT (9)] (1.14)
(0>t> — o)
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T+ O+ oD p[- RoT(e)J= (1.15)

with the conditions
00,7 =9, 8(—oc0,1)=0, a(0, 1) =5, a(—o0,7) =1
Proceeding as with the solution of (1.1), (1.2), we now divide the system (1.14), (1.15) into two systems.

Linearizing these last two equations over the reaction layer, introducing a parabolic approximation for the
exponential, and drawing on (1.5), one is led to

DB OB~ B8 + (1 — 07 (an + gaiB) — vy B0 O0>i>t)  (L16)
dall ° 02 an d\p day®
+ G 1 —B(1—6°)+C(1 —06,°] (au#‘gaxeu) +35 v + v = 7 =0 (1.17)

with the conditions
01(0) = 8, ay (0) = b

In the heating layer, linearization of (1.14), (1.15) leads to

(1.18)
80 (§) =0 (E>E> — )

with the condition
. 899 (— o0) = 0

A first-approximation solution for (1.14), (1.15) is now obtained by integrating (1.16)-(1.18) with a
predetermined #(7) function, adjusting to get temperature distribution coincidence at & =¢£,.

The time-variation of the pressure in the semiclosed chamber is given by the mass-balance equation
V dp .
mTt = SPpUt — AF =P (1-19)

Here T, is the gas temperature in the chamber (assumed constant), V the free volume of the chamber,
o the area of the powder combustion surface, F, the critical cross-sectional area of the nozzle, R the
molar gas constant, and A the escape coefficient. In a linear approximation, (1.19) takes the form

oo X 4y .
w =ty (1.20)

X being the ratio of relaxation times for k-phase heating layer (t;) and chamber (t,),

L A S
=% L=y 7 FFoaT,

A stability analysis of the (1.11)-(1.13), (1.16)~(1.18), (1.20) system indicates that continual variation
in the damping coefficient over the critical region requres a stable combustion limit satisfying the equations

(Ayfe — Ag) (Ask — vAy) — (Bik + By) (Bsk — vBy) = (A1k — 4y)* + (Bik + By)? (1.21)

_(Auk — 43) (Bsk — vBy) - (Bik + Ba) (Ask — vota)
L= (AR =P T Bk T B (1.22)

Here y = wn/(w’)? is a dimensionless effective frequency and

Al = (1. - A.) (aq)l _ Wl)

A2=(1—X)(rY1+mX1)_a(Dl|,. 1 {_1Kmb°) ,

Ay = (1 — V@Y, + BX,) — o, (u +£25)
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The frequency and physicochemical parameters of the k-phase being given,(1.21) and (1.22) can be

used to find the values of k and y at the stability limit.

In the quasi-stationary case (y ~0), breakdown of stability occurs when

N [t — A+ g A (1 — )] — (1 —A) (N2 + pNa 4 BNY) .

v=1 + Oy [r—1F Amb" (1 —5°)] — (1 — M) (" Vs + mNg) (1.23)

where

Ni=1—g6, 5 [+ +28—-36) %]
Nz—‘1+G1 {Gz+[8+Gn(3B 2G,)1 }
Ns—1+g61{51+<8 26)% 4 (B+ 2 +6,(2B— g>+3G,(Gz—2B>15‘}

Ne=6{a+(B— 68 £ (B+20+6,2B— g)+G,(Gg—3B)] }

Calculations show (Table 1) that critical v values can be either greater or less than unity, under
typical combustion conditions. Table 1 shows values of », calculated from (1.23) for various parameter
values. Here, and in what follows, the assumption is made that the dispersion depth diminishes with in-
creasing pressure and decreasing initial temperature, relations consistent with estimates based on pre-
liminary experimental data. 1t is obvious that for the Tg model [7] v > 1, and for Q model vy < 1.
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TABLE 1

Combustion R
model r ] A g b m 8 Ve Ke
[8, 11} 0 0 0 o 1 1
[9} F01 +0 4] [ 1
{10] 0.84 0.5 6.4
A. D. 0.51 0.7 2.02
Margolin 0.17 0.9 1.2
0 0 0.84 0.5 | 0.4 4,23
0 0 0.51 0.7 ] 0.4 1.07
0 0 0.147 0.9 | 0.4 0.47
0 0 0.25 10 0.5 | 0.2 ] —0.05} 1—0.04 k&
0 0 | 0.5 10 05 (02| —0.051 1—0.01 &
0 0 0.75 10 0.5 ] 0.2 | —0.05 | 140.03 &
This paper 0 0 0.75 5 0.5 { 0.2'] —0.05 1—0.01 &
0 0 0.75 15 0.5 | 0.2 —0.05 140.04 &
1] 0 0.75 10 05]0 —0.05 | 110,02 &
0 0 0.75 10 0.5 1{ 0.4 | —0.05 14-0.03 &
0 0 0.75 10 [ 0.5 | 0.2 0 1—-0.02 &
0 0 0.75 10 | 0,51 0.2 | —0.1 140.07 k |
13 | 04 0.25 10 0.5 0.2 | —0.05 | 1-0.04 &
1/3 1 04 0.5 10 | 0.5 ] 0.2 | —0.05 | 1—0.07 &
1/3 { 04 0.75 10 | 0o5{02{ . -0.05 | 1—0.4 &k
1/ | 0.4 0.75 5 0.51 0.2 —0.05 | 1—0.15 &
13 | 04 0.75 15 0.5 0.2 —0.05 | 1—-0.08 &
ifs | 04 0.75 10 0.5 0 —0.05 |} 1—0.08 &
g 1 0 0.75 10 0.5 0.4 ] —0.05 { 1—0.13 £
s | 04 0.75 10 0.5 1 0.2 0 1-—0.16 &
i3 | 0.4 0.75 10 0.5] 0.2 | —0.4 1—0.03 &

If evolution of thermal energy in the k-phase chemical reaction
is neglected (A ~ 0}, the condition for stability breakdown in the semi-
closed chamber, namely v, =1 [8, 9], is again obtained as a special
case of (1.23).

Study of the constant~surface-temperature model shows

kzriT(i_M) (A<1) (1.24)

— 1—b°

to be a necessary condition for discontinuous loss of combustion sta-
bility.

A condition for combustion stability, similar to that of (1.24),
was originally obtained by A. D. Margolin [10].

Fig. 1

The condition for breakdown of stability obtained by Ya. B. Zel'dovich [11], namely, k, =1, follows
as the special case of (1.24) with A ~0.

Values k, corresponding to various values of the dispersion depth were calculated from (1.24) with
Q=270 kecal/mole, T,°—T,=400°C, m=0.4, and ¢, =0.4 cal/(g-deg) and are shown in Table 1. Critical
values of k taken from [10] and [11] are given in this same table for comparison. Taken in conjunction with
(1.24), the figures of the table indicate that stable states with k > 1 can exist if the k-phase exothermic
reaction layer bas finite depth.

Equation (1.24) indicates that stable steady-state combustion (at certain values of A) is possible when
k > 1, the conditions required being that A # 0, b° < 1, and the dispersion low (elevated pressure). Combus-
tion can be unstable, even at k < 1, in the other limiting case where the {nitial temperature is low, b°~1,
and m > 0. :

2. Analysis of the Results of Calculations Based on Egs. (1.21),(1.22), The effect of the A parameter
on the combustion stability is illustrated by Fig. 1. Curves 1, 2, 3, and 4 were developed for A =0, 0.25,
0.5, 0.75, respectively, using the values v =2/3, g=10, b°=0.5, m =0.2, 3 =—0.05. The dashed-line curves
apply to the case of surface temperature constancy (r =y =0), the full-line curves to the case of varying
surface temperature (r=1/3, u =0.1). Similar remarks also apply to Figs. 2, 3, and 4.

Increasing the value of A considerably extends the region of stable steady-state combustion. Physi-
cally, this is to say that the thermal effect of the gaseous phase on the condensed phase diminishes as the
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contribution of the k-phase chemical reaction to the thermal energy con-
tent of the powder increases. The thermal state of the k-phase is then
more and more nearly determined by the thermal energy liberated in
the solid phase reaction, the tendency being toward stabilization of the
combustion process.

2.5 7
/ The fact that the k-phase chemical reaction tends to increase the

H
!
|
i
|
1
-
’ZJ stability of combustion has already been pointed out in [12, 13], where
’,::/,) the problem has been discussed in terms of models, and for operating
/ s B N conditions different from those considered here. The study of [13]
. started from the improbable assumption that the k-phase reaction is
Fig. 4 a zeroth-order process. This approach led to an incorrect formulation
of the problem and a reduction in the number of characteristic para-

meters required in a final solution.

Increasing the m parameter has the effect of destabilizing the combustion process (Fig. 2). Curves
1, 2, and 3 of Fig. 2 apply for m =0, 0.2, 0.4 for v =2/3, A =0.75, g=10, b°=0.5, and were obtained with the
values 8 =—0.05. An increase in m implies a reduction in the initial powder temperature, with an accom-
panying impairment in k-phase heating, the effect of the thermal state of the powder on the gaseous phase
becoming more pronounced.

Figure 3 shows limits of combustion stability plotted as a function of the parameter 8. Curves 1, 2,
and 3 apply for 8 =0, —0.05, —0.1. Here it was assumed that » =2/3, A =0.75, g=10, b°=0.5, m=0.2. Re-
duction in 8 corresponds to an increase in the pressure.

The relation between the stability 1imits and the g parameter is shown in Fig. 4. Curves 1 and 2
apply for g=5, 10 and were constructed for the case in which » =2/3, A =0.75, b°=0.5, m =0,2, 8 =—0.05.
An increase in the g value results in a decrease in the combustion stabflity; it indicates an increase in the
activation energy for the condensed phase reaction, i.e., a contraction of the k-phase zone of thermal energy
evolution.

Calculations indicate the mean depth of the reaction layer to be some 20-30% of the value of w/u°.

The approach adopted here has been phenomenological, account being taken of exothermic k-phase
decomposition and dispersion in a generalization of earlier methods.

It bas been shown that many experimental results can be correlated in a model in which T, is assumed
to be constant and account is taken of a possible variation in the dispersion coefficient. This is indication
that it is the liberation of thermal energy during chemical reaction, rather than reaction layer inertia, which
is the significant factor here.

Comparison of theory and experiment is still a matter of difficulty since there are, as yet, no trust-
worthy data on the effect of the initial temperature and pressure on the dispersion depth, the one factor
which largely fixes the liberation of thermal energy.
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